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Abstract

We give a proof of two related theorems in symplectic geometry, both referred
to as the Duistermaat-Heckman theorems. The setting is always that of a
hamiltonian torus space (M,w) with moment map u. Considering symplectic
reduction, the first theorem relates the reduced space at levels t € t* in a
neighbourhood of any regular value of the moment map to the reduced space
at the regular value itself; the reduced symplectic form at level ¢ is found to
vary linearly in ¢. Pushing the Liouville measure on M forward by u gives the
Duistermaat-Heckman measure on t*; The second version of the theorem
computes the Fourier transform of a one-dimensional projection of this measure
as a sum over the fixed points of the action. This theorem is then used in
conjunction with the method of coadjoint orbits to prove the Harish-Chandra-
Itzykson-Zuber integral formula.
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Chapter 1

The Coisotropic Embedding
Theorem

We start off this report by presenting the key theorem in the proof of the first
Duistermaat-Heckman theorem. Let us give the relevant definitions.

Definition 1.1. Let (V,w) be a symplectic vector space, and W C V a subset.
Then the symplectic complement of W is the set

WY ={veV]wlhw) =0Ywe W}

In case W is a linear subspace, the complement satisfies (W) = W, but
not necessarily W N W<« = {0}.

Definition 1.2. We say the subspace W is coisotropic if W« C W.
If i : Z — M is an embedding for a manifold Z and a symplectic manifold
(M, w), the embedding is called coisotropic if T;(z) Z“i= is a coisotropic subspace

Our first goal is to prove the coisotropic embedding theorem outside the
setting of hamiltonian spaces:

Theorem 1.3 (Coisotropic Embedding Theorem). Let Z* a differentiable man-
ifold and i; : Z — M; embeddings into symplectic manifolds (M;,w;), for
j=1,2, such that

1. i1 and iy are coisotropic.
2. ijwy =i5we =T for T a closed 2-form of constant rank on Z.

Then there exist neighbourhoods U; of i;(Z) C M; and a symplectomorphism
f: Uy — Uy such that io = foi.



1.1 Main Ingredients

Proving the theorem in this form makes use of the tubular neighbourhood the-
orem and the Darboux-Weinstein theorem. Let us give the necessary definitions
to state them. The statements about the tubular neighbourhood theorem are
from [1], section 6.2, whereas the Darboux-Weinstein theorem is as in [2], the-
orem 22.1.

Let M™ a manifold and i : X*¥ < M an embedded submanifold. Write
x =i(x) in M, as well. At each point € M, view the tangent space to X at
x as a linear subspace of T;(z)M via the inclusion Di(z). Define the normal
space to x by N, := TeM/TxX, which is an n — k dimensional vector space.
Define the normal bundle as

NX :={(z,v) eTM |z € X,v € N, X}.

This has the structure of a vector bundle of rank n — k over X, and hence as a
manifold, NX is n-dimensional.
Regard X as an embedded submanifold of NX via the zero section

ig: X — NX, z — (z,0).

Theorem 1.4 (Tubular Neighbourhood Theorem). There exists a neighbour-
hood Uy of X in NX, a neighbourhood Uy of X in M, and a diffeomorphism
p : Uy — Uy such that the following diagram commutes:

Theorem 1.5. [Darboux- Weinstein] Let X a submanifold of M and wy and wy
nonsingular, closed 2-forms on M such that i*wg = i*wy, for i : X — M the
inclusion. Then there exists a neighbourhood U of X and a diffeomorphism f
from U into M such that

1. f(z)==x forallxz € X, and

2. f*w1 = Wwp-

1.2 Proof of the Coisotropic Embedding The-
orem

This proof follows that of the uniqueness part of theorem 39.2 in [2], combined
with some observations in 9.1 of [1]. First, we will show how the normal bundles
corresponding to i1(Z) and i2(Z) can be identified. We start by linear algebra.
Suppose (V™, ) is a symplectic vector space, and U* is a coisotropic subspace,



that is, one such that U C U. The quotient space V/U is then a vector space
of dimension n — k.
Claim: The pairing defined by

QO :V/UxU? SR, ([v],u) = Q(v,u)

is well-defined and nondegenerate.

Indeed, if v ~ v, then v — v’ € U, so that for v € U, we have 0 = Q(v —
viu) <= Q,u) = Qv',u), hence ' is well-defined. For nondegeneracy,
suppose Q' ([v],u) = 0 for all u € U?. Then also Q(v,u) = 0 for all u € U%,
whence v € (U%)? = U, so that [v] = 0.

If Q' ([v],u) = 0 for all [v], then also Q(v,u) = 0 for all v € V, which by
nondegeneracy of {2 implies v =0 = [v] =0.

From this we obtain an isomorphism

Q: VU — (UY*, [v] = Q' ([v],).

Hence as both our embeddings are coisotropic, Tj.)i(Z) C Tj.)M is a coiso-
tropic subspace for both embeddings, and thus the above considerations yield
an identification between the normal bundle N; = TM|;,(z)/Ti;(Z) — Z and
the bundle (7i;(2)“)* — Z.

Since we can view T, Z as a linear subspace of T; () M; via Di;(z), we may
write a generic element of T%;(Z) as (z, Di;j(z)[v]) for some v € T, Z. If this is
an element of the symplectic complement, we have that

0= (wj)i, (=) (Dij(2)[v],")
= (ijwj)z(v,)
= Tz(vv ')7

which tells us that v € T,Z7, yielding an identification of N; with (T'Z7)*,
and hence between N; and N themselves (recall that T was not required to be
nondegenerate). Let A : Ny — Ny the corresponding vector bundle isomorph-
ism.

Next, the tubular neighbourhood theorem applied to i; and i guarantees
the existence of diffeomorphisms ¢; : U{ — UJ for U{ C N; a neighbourhood
of the zero section 0;(Z) and U C M; a neighbourhood of i;(Z). These diffeo-
morphisms satisfy ¢; 0 0; = ;.

Set @ := g0 Aop; " and Wy := P*wy. We then have @ o iy = io:

(I)Oi1:¢20AOg01_10i1

Y o400,

2
(=)<P2002

@ .

= 12,

where (1) uses ¢; 00; = i; and (2) follows from the fact that A, as a vector
bundle isomorphism, is linear on fibres.



This implies that

sk — -k K
17001 = 119 wa
= ((13 o il)*wg
= i;WQ

J— -k
= Wi,

so wy and @ agree on i1(Z) and we are in position to use Weinstein’s theorem.
We obtain a neighbourhood U of i;(Z) C M; and a diffeomorphism ¢ from U
into a neighbourhood of ¢;(Z) such that g*w; = wy and g oi; = .

Setting f := ® o g hence defines a diffeomorphism from U D 41(Z) to a
neighbourhood of i5(7), satisfying

* * G * * —
[fwr = g"®%wy = g*w1 = wi,

that is, f is a symplectomorphism from a neighbourhood of i1(Z) to a neigh-
bourhood of i3(Z). Also, as g 043 = i1, we have

foilztbogoh:@oil:ig,

and so f is the symplectomorphism we seek.

1.3 Introducing Group Actions

Let us now assume that, in addition to the hypotheses of the coisotropic em-
bedding theorem, a compact Lie group G acts on Mj, preserving the symplectic
forms on M;. We claim

Proposition 1.6. The symplectomorphism from theorem 1.3 can be chosen to
be G-equivariant.

Proving this boils down to showing that the diffeomorphisms obtained by
Darboux’ and the tubular neighbourhood theorem, respectively, can be chosen
to be G-equivariant. Indeed, recalling

f=¢20A0pi oy,

if g and the @; are equivariant, then the action on the tangent bundle, and hence
the normal bundle, induced by differentiating the action is linear and commutes
with A, so that by equivariance of o, we obtain equivariance of f.

To see that it is possible to choose these diffeomorphisms as equivariant, we
must consult the proofs of the tubular neighbourhood theorem and Darboux’
theorem. These will rely heavily on properties of the exponential map, so let us
recall its definition and a few basic properties, as stated in lectures 43 and 52
of [3].



1.3.1 The Exponential Map

Definition 1.7. Let (M, g) a riemannian manifold and S € X(TM) the geodesic
spray associated to the Levi-Civita connection induced by g. Denote by © : D —
TM its flow, for D C RxTM the maximal domain of definition. Let S, C T M
the set of all tangent vectors such that (1,(z,v)) € D, and set S = |J,cps Se-
Let w: TM — M the projection.

The exponential map associated to g is defined as

exp: S = M, exp(z,v) =m(01(z,v)),

and we write
exp, :=expls, : Su — M.

Proposition 1.8. Let © € M and recall the canonical identification between
T, M and To, TM given by

d
Jo, i ToM — Ty, TM,  ves —| 04+ to.
dt|,_,

The following hold:
(i) For each x € M, exp, satisfies

Dexp,(0;) o Jo, = idr, um,

and as Jo, is a diffeomorphism, this means that exp, has maximal rank
near 0 and is hence a local diffeomorphism from a neighbourhood of 0, €
T, M to a neighbourhood of x in M.

(i) For each x € M, (m,exp): S — M x M has rank 2n at 0, and thus maps
a neighbourhood of 0, in T, M diffeomorphically onto a neighbourhood of
(x,2) € M x M. Moreover, if 0(M) C TM denotes the zero section, there
exists a neighbourhood U of O(M) such that (mw,exp) maps U diffeomorph-
ically onto a neighbourhood of the diagonal A = {(x,x) | x € M}.

Proposition 1.9. Let (M, g) a riemannian manifold and d the distance metric
on M induced by g. Set

Oz,e) ={v e LM | Vga(v,v) <e},  Ulw,e)={y € M|d(z,y) <e}.
Further set
inj, (v) = sup{r > 0 | exp, |o(a,r) is a diffeomorphism onto its image}.

Then fore € (0,inj,(x)), exp, |o(z,e) maps O(x, ) diffeomorphically onto U(x,¢).
Hence for every y € U(x,e), there exists a unique length-minimizing geodesic
joitning x to y.

With this machinery in hand, we examine the proof of the tubular neigh-
bourhood theorem in order to identify the diffeomorphisms ¢; from the proof
of the coisotropic embedding theorem.



1.3.2 Identifying the Morphisms from the Tubular Neigh-
bourhood Theorem

We will do this by sketching a proof of the theorem in case the submanifold X
is compact, which is an adaptation from the outline given in 6.2 of [1].

Endow M with a riemannian metric g, and let d(p,q) the corresponding
distance metric on M. Define for € > 0 the e-neighbourhood of X by

U :={peM|d(p,q) < e for some g € X}.

Our strategy is to find a neighbourhood of the zero section in NX to identify
with a neighbourhood of the zero section in T'M which is mapped diffeomorphic-
ally onto ¢ by the exponential map. The main points of this proof thus consist
in defining the appropriate neighbourhood and choosing & small enough so that
we may make use of the various properties from section 1.3.1.

For the neighbourhood, note that we can identify the normal space at z with
the following subspace of T, M:

N, M = {v € T,M | go(v,w) =0Vw € T, X} = T, X+,
To see this, consider the pairing
T, M|x/T,X x T, X+ - R, ([v],u) = g, ([v],u) := gz (v, u).

If v ~ o', then v —v' € T, X, so that 0 = g,(v—2',u) for any u € T, X+, and by
linearity of g,, this proves the pairing is well-defined. It is also non-degenerate,
since if there is [v] € T, M|y /T X such that g/ ([v],u) = 0 for all u € T, X+,
then also g,(v,u) = 0 for any representative v and all v € T, X", and thus
v € (T, X))t = T, X, meaning [v] = 0. If ¢/ ([v],u) = 0 for all [v], then u = 0
follows simply from nondegeneracy of g,.

This now induces an isomorphism

NacX — (TzXJ_)*v [v] = gI(U, ')7

which we can identify with 7, X+ by g.(v,-) v since g, is an inner product.

Now define
NX® ={(z,v) € NX | /gz(v,v) < €}

This is the neighbourhood of the zero section we want to map onto U®.

For this, choose 0 < & < inj,(X) := inf{inj, (y) | y € X}.

Claim: For X compact, inj, (X) > 0.

This is proposition 52.16 in [3]. Using the second claim in proposition 1.8,
we obtain a neighbourhood V' of 0(X) such that (7, exp)|y is an embedding.
By compactness, there are finitely many z;, £; such that

k
X C U U(Q?i,Ei),

i=1



with the property that
U(z,3e;) x U(zi,3e;) C (myexp)(V), i=1,...,k.

Hence if y € X, there is an index i such that y € U(z;, ;). As exp, is an
embedding on O(x;, 3¢;), this gives inj,(y) > 2¢;, and hence

inj, (X) > zzr{unk%l > 0.

With this in hand, note that N, X = O(x,¢) is mapped diffeomorphically
onto U(x,e) by the exponential map by proposition 1.9, so that we obtain a
family of diffeomorphisms (exp, )zex onto U(z,e). The following lemma, taken
from [4], is the final step to prove the theorem:

Lemma 1.10. Let T' a metric space, V., W and D subspaces with W C V
and W C D. Let f : D — V a continuous map such that flw = idw and
assume there exists for each y € W some ¢, > 0 such that the restriction of f
to B.,(y) N D is a homeomorphism onto an open subset of V.. Then there exists
a neighbourhood Y C D' C D, open in D, on which [ is injective.

Taking T'= TM, V the zero section 0(M) C TM, W the zero section of
the submanifold X and D = NX¢ gives that the restriction of exp to NX*
considered as a map NX¢ — 0(M) = M satisfies the requirements on f above,
so that we can find a neighbourhood of the zero section 0(X) in NX*¢ on which
exp is injective. This neighbourhood is open in N.X*?, so that we can just choose
€ small enough to be contained in it, and then take Uy = N X¢. Since exp is
smooth and maps 0(X) to X, we conclude that it maps Uy diffeomorphically
onto a neighbourhood U C M.

The final statement left to show is commutativity of the diagram in 1.4, but
this is evident as exp oig(z) = exp(x,0) = i(z) € M.

Proof of lemma 1.10. For each y € W, f(B., ,2(y) N D) is open in V. Hence
as f(y) =y, it contains B, (y) for some ¢, < e,/4. As f is a homeomorphism
when restricted to this ball, its preimage 7, = ffl(B% (y)) is open in D. Set
D" = U,cy Zy. Then D' contains Y as y € Z, for all y. Take z1 € Z,, and
zo € Z,, are such that f(z1) = f(22) = yo, and without loss of generality,
€y, = €y, Note further that yo = f(zi) € f(Zy,) C Be, (yi) for both i. Then

d(22,91) < d(22,92) + d(y2,90) + d(yo, y1)
< 5y2/2 + 6;12 + E;ll
< Eyz/2 + 5y2/4 + 5y1/4
< Eyi,

so that z1,29 € Bgy1 (y1) N D. f restricted to this set is a homeomorphism,
however, so that z; = 25. O

In the general case, the strategy is to replace € by a continuous function
€ : X — R, which tends to zero quickly enough. In any case, the diffeomorphism
we obtain is the exponential map restricted to an appropriate domain.



1.3.3 Achieving Equivariance of the Exponential Map

While we will not state the proof here, the diffeomorphism obtained from Dar-
boux’ theorem is also an exponential map, as seen in the proof of theorem
22.1 in [2]. Hence we must show that it is possible to arrange that the expo-
nential maps commute with the G-action, that is, if we denote the action by
Y : g — 1y € Diff (M), then

exp(¢g(z), Dipg(z)[v]) = 1bg 0 exp(z, v). (*)

Proposition 1.11. Let (M,g) a riemannian manifold and let G a Lie group
acting on M. If g is invariant with respect to the action, that is, if for all
x € Mu,veT,M,ge G, we have

Gy () (lefg(f)[u]v D@Dg(ﬁﬁ)[l]]) = goc(uv U)a
then (%) holds.

Proof. We prove that if v : (¢7,¢T) — M is a non-constant geodesic, then 940~y
is, too. Assume (0) = z, 7/(0) = v, and let T = 2 € X(R). Then we need to
show that V7 ((¢4 0 )") = 0 for the Levi-Civita connection. Consider

as v is a geodesic. However, we also have

T{(hg o 7 (1hg 0 7)) = 2(Vr((¢hg0 7)), (1hg 0 '),

and (b4 0y)" # 0 as we assume +y to be non-constant implies Vo ((¢, 0)") = 0.
Note that (1, 07)(0) = () and (12, 07)'(0) = Disy()[o].

Now recall the defining property of the geodesic spray S, namely that a curve
0:(—¢e,e) = TM is an integral curve of S if and only if 704 is a geodesic. Thus
for © the flow of S, we have shown that

Yg 0 m(O(x,v)) = T(Or(thg (), Dty (x)[v])).

In particular for ¢ = 1, we obtain

Vg exp(z,v) = exp(y(z), Dy (x)[v]).
O

Hence in order to complete the proof, what is left to show is that we can
always find such an invariant riemannian metric. This is according to [5].

Proposition 1.12. Let M a manifold and G a compact Lie group acting on
M. Then there exists a G-invariant riemannian metric on M.



Proof. Let ¢’ any riemannian metric on M and define

g= / Yag'da,
G

where the integral is taken with respect to the Haar measure on G. This metric
is invariant:

gwmwwummDm@mb=memMmDmum¢Dm@mmw
:L%MAWMM%&M@MW

:L%mw%mwﬂmmwm
= gw(u7 U)a

where the second to last equality is due to translation invariance of the Haar
measure. 0

1.4 Hamiltonian Group Actions

As we may always choose an invariant riemannian metric, and in this case the
corresponding exponential map commutes with the G-action, we have proven
the following version of the coisotropic embedding theorem:

Theorem 1.13 (Equivariant Coisotropic Embedding Theorem). Let (M;,w;)
two symplectic manifolds of dimension 2n, and Z a differentiable manifold of
dimension k. Assume we have two embeddings i; : Z — M; and an action of a
compact Lie group G on both M; preserving w;. Assume the embeddings satisfy

1. {jw] =i5wy =T for T a closed 2-form of constant rank on Z;
2. The embeddings i; are coisotropic and G-equivariant.

Then there exist G-invariant neighbourhoods U; of i;(Z) in M; and a G-equivariant
symplectomorphism f : Uy — Us such that f oiq = is.

Taking this one step further and letting the actions be hamiltonian with
G-equivariant moment maps, we can also prove

Proposition 1.14. Suppose in addition to the above hypotheses that the action
by G on M; is hamiltonian with moment maps p; : M; — g* satisfying p11 011 =

10



o 0io. Then f satisfies us o f = 1, that is, the following diagram commutes:

Zl(Z) —> Ul —> M1
e X
Z f g
N 4

19(Z) —— Uy —— M1

Proof. We claim that ps o f is a moment map for the action on M;. We can
take f equivariant thanks to the preceding discussion, so it remains to verify
that (us o f, X) is a hamiltonian function for all X € g. Indeed, for p € M; and
v e Tth

d{pz o f, X)[p(v) = (D(p2 o f)(p)[v], X)
= (Dp2(f(p))D f(p)[v], X)
= d{p2, X)) (DS (P)[v])
= —w]%(p) (& (f(p), Df(p)[0]),

where we used that uo is a moment map. Next, note that

Flexp(tX) -p) = 0| expltx) - f(p) = (/@)
t=0 t=0

DIk ()] = &

by equivariance of f. Hence the last term above becomes

(= w2)p(€x (P),v) = —(w1)p(Ex (p), ),

using that f is a symplectomorphism. This establishes that us o f is a moment
map, and thus us o f and p differ by a constant. However, as 1 047 = pg 0 is
and f oi; = io, we also have

foo foig = pyoiy = py0iy,

whence we see that ps o f = p; on the nose on i1 (Z). Hence the constant must
be zero. 0

1.5 The Equivariant Darboux Theorem

Using quite similar techniques as above together with the Weinstein theorem, we
can prove an equivariant version of the Darboux theorem. Although we will only
use it in chapter 3, we shall state and prove it here due to this similarity. This
formulation of the theorem is analogous to 1.4.7 in [6], the proof an adaptation
of an outline given in [2] after theorem 22.1.

11



Theorem 1.15 (Equivariant Darboux). Let (M?N w,T" u) a hamiltonian
torus space, and p a fized point of the action. Then there exists a T"-invariant
neighbourhood U of p, coordinate functions (x1,...,ZN,Y1,---,YN) centered at
p and constants XV ... XN € Z" such that on U

1. wy =wo = Z;V:1 dax; Ndy; = %Zjvzl dzj N dzj, where z; = xj + iy;.
2. The action becomes the action of T™ by multiplication with weights A9 :

i0 6., (A1) 0 TONRN
(e"t, ..., € )~(zl,...zN):(el< Vz1,..., € Yan ).

3. The moment map becomes

n N

1 . 1 .
_ 1 )42 o 2] — 1 DIE
uu—u(p)+2§ Az +y|—u(p)+2j§:lﬂlzg\~

=1

The proof will make use of the Darboux-Weinstein theorem we just used to
prove the coisotropic embedding theorem, together with the fact that rieman-
nian metrics invariant under the action of a compact Lie group always exist,
and have the property that their associated exponential maps commute with
the action.

Proof. First consider the setting of a hamiltonian G-space for G compact. Choose
an invariant riemannian metric and consider the associated exponential map.
Then exp, is a local diffeomorphism between neighbourhoods of 0, € T, M and
p € M, and T, M is a symplectic vector space under the form w,. G acts on
T,M by

g - u = Dipy(p)[u]
because p is a fixed point. This action is linear, so it is a representation of G

on T, M, called the isotropy representation.
At the point 0, € T, M, we have

(expy, w)o, [Jo, (1), Jo, (v)] = wp(D exp, (0p)[Jo, (w)], D exp,, (0p)[To, (v)]) = wp(u, v),

so that the two symplectic forms w;, and exp, w agree at this point. Using the
Darboux-Weinstein theorem, this guarantees the existence of a diffeomorphism
g : T,M — T,M defined on a neighbourhood of 0, such that ¢(0,) = 0, and
g* exp,w = wp. Thus if we set

¢ = (exp,0g) ™",

we see that ¢ is a local symplectomorphism from a neighbourhood of p € M to
a neighbourhood of 0, € T, M. As we took the metric to be G-invariant, the
exponential map, and hence also g and ¢, are equivariant. Let U be the domain
of ¢.

12



View T, M as a complex vector space. Then by invariance of the riemannian
metric g we chose, we have that for T, M endowed with the inner product g,,
the isotropy representation is unitary.

Assuming further that G is not only compact, but also abelian, we may
decompose T}, M into its weight spaces (see, for example, section 3.5.2 in [7])

T,M =PV,
X

where the sum is over the characters, that is, continuous group homomorphisms
x:G —= S and

Vi ={veT,M|g-v=x(g)v}.
As T, M has complex dimension IV, at most N of the x may be nontrivial;
denote these by (x1,-..,XN)-

Now construct a (real) symplectic basis (u1, ..., un,v1,...,vn) of T, M such
that each w; and v; is contained in some V;, and let (e1,...,en, fi1,..., fn) the
standard symplectic basis of CV. The map S sending u; — e; and v; — fi,
extended linearly, is then a symplectomorphism. Concerning the action, we
obtain for v = a’u; + bv; € T,M and g € G that

g-v=a'(g-u;) +V(g-v))
= a'xi(g)ui + V' x;(9)v;.
Thus applying S,
Blg - v) = a'xi(9)B(ui) + ¥ x;(9)B(vs)

= a'xi(9)e; + ¥ x;(9)f;

=:g-(a'e; + V' f})

=g-B(v).
Hence under this definition of the action, CV has the same weights in its weight
space decomposition. What we have shown so far is that for a compact abelian
Lie group G acting on a symplectic manifold M?2", we have a local equivariant

symplectomorphism
(M,w) = (CN,wy),

where the action on CV is as above and wy is the standard symplectic form.
The first statement is thus proved.

Now suppose G = T™. It can be shown (corollary 3.67 in [7]) that the
characters of G are of the form

x(0) = "

for § € T" = R"/27Z™ and some A € Z™. In this case, this means we may
decompose CV into

N

N

CcN =P Wio,
i=1

13



where T™ acts on W) by
0.z =e*"0,

Choosing an appropriate basis of CV, we may thus write

N
z2={(21,-.-,2N) € @W)\(J’)

j=1

for z; € Wy, so that the action is given by

&) SN
0 -z= (e“”\ ' Nz, .., et N ZN) ,
which proves the second claim.

The third claim now simply follows by computing the moment map for this
action on CV. Indeed, the fundamental vector field associated to v € t* =2 R"

d
&(z) = pn . exp(tv) - z
d , .
= (e . en) (2. .., 2N)
t=0
_d (@O0 AN )y
il .
A D I CUR e ION
dt|,_, Y

(<)\(j)7 tv) + ¢j)a¢j

d
"2,
= Z()\(j),u>8¢j.
J

Hence &, = >, (AW, ex)04,. Thus if Y € X(CV) is arbitrary,
wo(&e,Y) = Z ridrj A dg; (€errY)
J

= Z ridr; (Y)d(bj <Z<)\(l)’ ek>a¢z>

l

= — Z<)\(Z), 6k>7“ld7“l(Y)
l

= - <Z<A<l>,ek>) %dr?m.

l

Thus the k-th component of the moment map is % (Zl (O, ek>) r#, which means

that, up to a constant,
1 k
b =5 Ek A )rz.

14



Hence our moment map agrees with the claimed one up to the constant p(p).
But since following diagram must commute and the composition of all the upper
maps takes the value 0 at p, we see that the constant must be u(p), finishing
the proof.

T,M —2 ¥

(exp,, og)_l/' nu
M

15



Chapter 2

The Duistermaat-Heckman
Theorem

2.1 Reduction near the Zero Level

In Marsden-Meyer-Weinstein’s reduction theorem, one considers a hamiltonian
G-space (M,w,G,u) for G compact and the restriction of the action to Z :=
p~1(0) being free. Let us further assume that u be proper, so that p=1(t) is
compact for all t € g*. But if G acts freely on Z, it also acts freely on u~1(t) for
t € g* in a neighbourhood of zero, so that we may consider the reduced spaces

My = p~(0)/G, M; = p~'(t)/G,

with respective symplectic forms wg and w;. We will use the coisotropic embed-
ding theorem to compare the symplectic structure of these spaces for G = T".

Let dim M = 2N. We do this by considering the mainfold M’ = Z x t*,
endowed with the action induced by T™ by

0-(z,v)=(0"z,v).

Introducing the projection and inclusion map ¢’ : z — (z,0), we are in the
following situation:
Z x t*

Z
M
We would like to expand this diagram to obtain one analogous to the one from

proposition 1.14. Hence, we need to endow Z x t* with a symplectic form and
a hamiltonian T™-action such that the conditions of the equivariant coisotropic

t*

16



embedding theorem are satisfied, to obtain a local symplectomorphism between
neighbourhoods of i'(Z) and i(Z). We proceed along the lines of chapter 30 of
[1], or section 2.1 of [8].

Recall first the principal bundle obtained by reduction

7zt oM

&

My
and the definition of a connection form on principal bundles:

Definition 2.1. Let 7 : P — M a principal G-bundle. Then o € QY(P,g) is
called a connection form if

e a(&,) = v for &, the fundamental vector field and all v € g;

e « is equivariant with respect to the adjoint action, that is,
a(g - p) = Adg(a(p)).

Now choose a connection form a € Q!(Z,t) with regard to this bundle for t
the Lie algebra of T™. T™ being abelian means the adjoint action is trivial, so
a has to be T"-invariant and satisfy a(&,) = v for all v € g.

Let (t;); an orthonormal basis of t and (¢'); the corresponding dual basis.
This induces a function

ti: Z xt" — R, (z,p) = p(t;).

With regard to this basis, we may also write the connection form as a =
S ait; for some a; € QY(Z), which satisfy a;(&,) = t'(v). Let us use this to
define a symplectic form on Z x t* by

n
w' = primtwo + Y _ d(tipri(a;)).
i=1

Note that the ¢; may be regarded as global coordinates on t*, so that J;, is a
well-defined vector field on t*.
For ¢ € t*, the last term in the definition of w’ can be rewritten:

(t,pri(a)) = (O, pri(a;t;))
i(t)pry (o) (', )

(
t
t

where we used the Einstein summation convention. Hence sometimes, we will
also supress the pullback by the first projection from notation and write w’ as

W =7 (wo) +d(t, a).

We claim this is the symplectic form we are looking for.

17



2.1.1 Conditions on the Form

This section is dedicated to proving that w’ satisfies the conditions of the coiso-

tropic embedding theorem. We will prove w’ is locally symplectic and T"-

invariant, that ¢ and ¢’ are coisotropic embeddings, and that i*w = (i')*w’.

Proposition 2.2. ' is symplectic in a neighbourhood of Z x {0}.

Proof. As the exterior differential commutes with pullbacks, w’ is clearly closed.
As for nondegeneracy, note that on Z x {0}, we have

n

W' =primiwy + Z dt; A pry(a;).

i=1

Then we have for the second term in the definition of w’ evaluated at the vector

field ((0,y,), (&,0)):

> dte Apri(ar)((0,0,), (€,,0)) = Y dtx(0,r,) pri(aw) (&, 0)

k=1 L s —ak (&)
- dtk (gtm 0) prT (Olk)(o, at1)
———
=0
= ai(gti)
= ti(t;)
=1.

As prim*wo((0,0,), (&;,0)) = 7 wo(0,&,) = 0, we obtain nondegeneracy of w’
on Z x {0}. Hence as nondegeneracy is an open condition, «’ is nondegenerate
in a neighbourhood of Z x {0}. O

Proposition 2.3. ' is T"-invariant.

Proof. Take (z,p) € Z x t*, 0 € T" and (u,v), (u/,v") € T ,)(Z x t*). Denote
the action by ¥y : Z x t* = Z x t* as defined above, that is, 1y is the identity
on the t*-factor, and compute

(P77 w0 ) sy (2.0) (D0 (2, ) [(w, v)], Db (2, p) (', 0")])
= (Prim*wo) (g ().p) (D0 (2) 1], v), (Do (2) [u'], V"))
= (wo) 21 (D(m © ) (2)[u], D(7 0 4b) (2) [u])
= (wo) (2 (D7 (2)[ul, D (2)[u'])
= (i7" wo) (= p) (1, 0), (0, 0)).

Similarly for the other term: expanding d(t;pri(«;)), it is sufficient to check
that dt;, pri(«;), and prj(de;) are T"-invariant. The latter two are evident

18



since the «; are T"-invariant by invariance of «, and we have

(dti) (o (2).p) (Do (2)[u], v) = v(t;)
= (dti)(z,p) (u7 U)

under the identification of T,t* = t*. O

Verifying that the embedding Z = p~1(0) < M is coisotropic will require a
preliminary lemma, as discussed in [6], or in section 23.2 of [1]:

Lemma 2.4. Let (M,w,G, 1) a hamiltonian G-space, and p € M. Denote by
O C M the orbit of p. Identifying the tangent space to g* with g*, consider the
differential of the moment map as

Du(p) : T,M — g".
Then we have ker Du(p) = T,0%.

Proof. Recall that p is a moment map and hence satisfies d{p, X) = —1¢, (w) for
X € g. Recall that for functions, we have df, = D f(z) under the identification
of Ty)R = R, so that if v € T, M and p € M, we have

d{p, X)p(v) = D{p, X)(p)[v]
= (Du(p)[v], X)
= —wp(éx(p),v).

Note that the vector fields {x (p) at p span 7,0 for X € g. Thus by nondegen-
eracy of wy, it follows that

Du(p)[v] =0 <= (Du(p)[v], X) =0 VX eg

= —wp(Ex(p)v) =0 VX cg
— v e T,0%.

Corollary 2.5. i: Z = u~(0) < M is a coisotropic embedding.

Proof. By the implicit function theorem, we have Di(2)[T,Z] = T, Z = ker Du(z),
which is equal to T, O“= for O the orbit through z by the previous lemma. Hence
note that T,Z%: = ker Du(2)¥= = (T,0%=)¥= = T,O. p being invariant with
respect to the action means it is constant on orbits, so that O is contained in

Z, and hence also
T.2 =T.0CT.Z.

O

Proposition 2.6. i"*w’ = i*w in Q%(Z), and the inclusion i’ is also coisotropic.
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Proof. A simple computation shows

i = i/*prlﬂ wo +Zd 2pI‘l Q; ))

n

= (mopryoi ) wy+ Z d((t; o))
i1

:W*WO+0

=i*w.

We used that i’ o pry = idz, ¢; o ¢’ = 0 and the identity 7*wy = i*w from
symplectic reduction.

Let us now verify that 4’ is coisotropic. Note that i'(Z) = Z x {0}, and
that we have for any z € Z that Di'(z)[Z] = T.Z x {0}. We must show
that this subspace is coisotropic, which amounts to showing that if (u,v) €
T20)(Z x {O})“/, then v € T.Z and v = 0. For all (u’,0) € T )(Z x {0}), we
have

0= sz,O) ((u7 ’U), (u/’ O))

= (P37 w0) (z,0) ((u, v), (', 0)) + D dtx((u, v))pri () (4, 0))
k=1

— dty.((u',0))pri(ar) z,0) ((u, v))

= (m*wp)» )+ Z v(t — dtg(0)(ak) 5 (u)

k=1

= (i*w),(u,u’) = — Zv(tk)(ak)z(u’).
k=1

Hence as the left hand side is independent of v, equality implies that neither
does the right side; since the t; form a basis of t, this implies v = 0 and thus

wi(z)(uvu/) =0 Y€ Ti(z)Zv

where we view Tj.)Z as a subspace of Tj,)M. This means, of course, that
u € Ty)Z*, which is a subspace of Tj.)Z by the last corollary, finishing the
proof. O

Proposition 2.7. The action of T™ on (M’',w') defined above is hamiltonian
with moment map
ry: Z Xt =t (z,p) = p.

Proof. The fundamental vector field associated to this action is just

Co(z,p) = (exp(tv) - z,p) = (§&u(2), ),

t=0

exp(tv) - (z,p) =

dt|,_, dt
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and thus its flow is

G Z Xt = Zxt, (2,p) = (exp(tv) - z,p) = (¥:(2),p)

for ¢ the flow of &,. Hence we compute

1, = primtwo(Gey ) + D e, (d(tipr (o))
i=1

= wo(Drléy ], ) + ) Lo, (tipri(cw)) — dig, (tipri(a)).
i=1

The first term vanishes since m(exp(tt;) - z) is constant. For (z,p) € Z x t* and
(u,v) a tangent vector, we have

Lo, (tipr () (z,p) (w,v) = G tipry () (2 p) (U, v)

t=0

= dt =0 (ti °© ¢t)(Z’p)(ai)exp(ttj)»z(DQOt(Z)[u])

= | )

by T"-invariance of the «;. For the other term, we have

w,, (tipr1 (i) (2 p) = ti(2, ) (@)= (&, (2))
= plt)t'(t;).

Hence summing over i, we obtain

szw’ =0—d(p(t;)).
O

Hence the coisotropic embedding theorem guarantees the existence of neigh-
bourhoods i(Z) C U € M and i/(Z) Cc U’ C M’, along with an equivariant
symplectomorphism f : U’ — U, such that the following diagram commutes:

N(Z) —— U —— Z xt*

/ pry
Z f
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2.1.2 Comparison of the Reduced Spaces

In order to compare the reduced spaces My and M;, this allows us to work in
our newly constructed manifold M’ with moment map given by pr,y, and thus
instead consider the reduced spaces

pry (t)/T" = Z x {t}/T"
which are hence symplectomorphic to M; for ¢t € t* in a neighbourhood of zero.

Proposition 2.8. The reduced space (My,w;) is symplectomorphic to

(M()vwo + <t7ﬁ>)a

where B is the unique 2-form on My such that 7*5 = A for A = da the curvature
form of the connection o on Z.

Proof. As explained above, the space (M;,w;) may be identified with (Z x
{t}/T",wj}), where w; is the form obtained by symplectic reduction, which means
it satisfies ifw’ = m*w, for iy : Z x {t} < Z x t* the inclusion.

Restricting w’ to Z x {t} is

ifw' = mrwo + Z d((t; o ir)oy)
i=1
= 7r*w0 + Z t(tl)d()él
i=1
= m*wp + (¢, da)

T wo + (t, 7 5)
T (wo + (t, 8))-

This proves the claim by uniqueness of the reduced form. O

By homotopy invariance of the de Rham cohomology classes, this implies
our first main result, which is theorem 2.7 in [8]:

Theorem 2.9 (Duistermaat-Heckman). The cohomology class of the reduced
symplectic form [w] varies in t according to

[we] = [wo] + (¢, [B])-

Note that by the Chern-Weil isomorphism, [3] is in fact independent of the
choice of connection o on Z.

2.2 The Duistermaat-Heckman Measure

The following definitions are taken from 30.1 in [1]. For any symplectic manifold

N . . . .
(M?N w), we have that < is a volume form. This gives rise to a measure on
M:
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Definition 2.10. For U C M a Borel set, that is, a set in the o-ring generated
by compact subsets of M, define the Liouville or symplectic measure m,, on

Mb
Y N

If (M,w,G, ) is a hamiltonian G-space with p a proper moment map, we
may push this measure forward by u:

Definition 2.11. The Duistermaat-Heckman measure mpy on g* is defined
to be the pushforward measure of my, by u, that is, for U a Borel set of g*, define

wlV

mDH(U) 2:/ —-—.
1wy N

As g* is a vector space, we may identify it with R™, where we also have
the Lebesgue measure A\. We will see that mppg is absolutely continuous with
respect to A\, and investigate the corresponding Radon-Nikodym derivative, that
is, a measurable function f on g* such that

mon() = [ fax

Note that in the case of G = T"™, the Lebesgue measure on t comes from dt; A
... Adt,, for the t; an orthonormal basis of t.

2.2.1 Integration on Fibres

In the computations for the Duistermaat-Heckman measure, we will need to
integrate on the principal fibre bundle 7 : Z — M,. Here we introduce the
notion of how to do this, following section 3.4.5 of [9].

As in the case of a single manifold, we require the bundle to be orientable,
which for fibre bundles is defined as follows:

Definition 2.12. Let 7 : E — M a fibre bundle with fibre F. The bundle is
said to be orientable if

1. The fibre F is orientable;

2. There exists an open cover (Uy) of M and trivialisations ¥, : 7= 1(Uy) —
F x U, such that the transition maps

pgaz\lfﬁo\llgl:FX(UaﬂUﬁ)—)FX(UaﬂUﬁ)

are fibrewise orientation preserving, that is, for each y € Uy, NUg, the
diffeomorphism
F—=F [ psalfy)

18 orientation preserving.
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Let 7 : E — M an orientable fibre bundle with fibre F'.

Proposition 2.13. There exists a linear operator
Tw : Qe(E) = Qe (M)

whose degree is —r for r = dim F', locally defined as follows on coordinates over
a local trivialization of E of the form (x,y) for x = (2*) coordinates on F and
y = (y?) coordinates on M: If w = fdx' Ady’ € QF(E) = QF(F x M) locally
for some f € C°(F x M) and k = |I|+ |J|, set

w) = (/F f(z, -)da;f> dy’ € QF" (M),

where the notation is meant to indicate that we integrate over x. Note that
whenever |I| # r, we have 7, (w) = 0. Whenever k—r < 0, we also define m,(w)
to be zero.

We call . the integration-along-fibres operator.

The main property of this operator we will use is the so-called projection
formula:

Proposition 2.14. Let 7 : E — M an oriented fibre bundle with fibre F,
w € N(E) and n € Q.(M). Then we have

/w/\7r*(7])=/ T A1)
E M

Proof. Consider local coordinates over a trivialisation (U,) of the bundle, along
with the projection maps pry : F x M — F and pry : F' x M — M. Then we
can view pullbacks of forms on M by 7 as forms on F' x U, and write

w= fdx! Ndy’, feCF(Fx M),
n=gdy", geC> (M)
7 (n) = pr(n) = g(pry)d(y o pry)~,

o=(f o)
Then
/Ua Taw A1 = /UQ (/F f(ac,-)da:l> dy” A gdy*

=/ fd(z opry) Ad(yopry)” Ag(pry)d(yopry)™
U xXF

:/ w A T*(n).
UaxF

Hence as U, is an open cover, the result follows. O
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2.2.2 Computing the Measure
To start, we consider the symplectic volume of the reduced spaces (M, w;)

Proposition 2.15. vol(M;) is a polynomial in t € t* = R™ of degree at most
N —n.

Proof. By the symplectomorphism of proposition 2.8

I e A T e
vol(My) = /Mt N =)~ /Mo o

Let us write 3 = 't; for the t; the basis of t and ' € Q*(My), and t = a;t/ for
a; = t(t;). Then we can write
<ta 6> = a’jﬁi@ja ti>
= azﬂi'

We expand using the multinomial theorem:

i) = ot [ (Ve S (B,

Mo = o) =k
or equivalently,
a(X

vol(My) = Y Bt - Bangy Tl
—n — lq!--. | n
| <N —n (N =n—|a))lar!---ay! /s,

so under the identification of ¢ € t* with the vector a € R"™, the symplectic
volume of the reduced space M; for ¢ in a neighbourhood of zero is indeed a
polynomial of degree at most N — n. O

Now let U C g* a Borel subset contained in the neighbourhood of 0 which is
such that Z times this neighbourhood is symplectomorphic to a neighbourhood
of i(Z) € M. Then (1= *(U),w) is symplectomorphic to (Z x U,w’), and thus

wN (wl)N
mpH U :/ e :/ .
( ) ,u,fl(U) N' ZxU N'

Next, we evaluate (w’')N = (7*(wo) + d{t, o))V . First, we expand the differ-
ential, so that we get

(7% (wo) + (dt, &) + (t,da))™.

As the above summands are all two-forms, their wedge product is symmetric
(that is, 71 A 2 = n2 A my for any two-forms 7y, 72), so that we can use the
binomial theorem to obtain

N

> () (et (080 Har )

k=0
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Here we used that da = 7* 3. Since wg + (¢, ) is a two-form on My, which has
dimension 2(N — n), its powers (and hence powers of 7*(wgy + (¢, 3))) vanish
whenever N —k > N —n <= k < n. On the other hand, by antisymmetry
of the wedge product on one-forms, we have that o; A ; = 0 for all 7, so that
only factors with distinct a; survive in the expansion of (dt,a)*. As i ranges

in 1,...,n, this means that (dt,a)* = 0 whenever k > n. Hence only the
k = n-term survives, which is
N!

T (™ (o + (6 8)) T ()

Expanding the last term, we have again due to anti-symmetry that only terms
of the following form survive:

dto(l) Nagy N A dta(n) A Qg (5),

for any o € S,. Using symmetry of the wedge product on two-forms, we may
rearrange the sum over .S, to give

nldty Aoy A ... ANdty, N oy,
which, up to sign, is equal to
nlag A ... Aoy, Adtp Adt,.

Hence the form we integrate over Z x U, remembering the factor %, takes the
form

m(ﬂ'*(wo + (NN T AL A Adty AL A dty,

so that by Fubini,

mDH(U):/U{/Z (ﬂ*(wo(]—vkﬁf,f;!))N”/\al/\”./\an dti A ... N\ dty,.

Using the projection formula from proposition 2.14, the integral over Z is

equal to
t N-—n
/ %W*(al AN ), (k)
Mo (N —n)!
where 7. (a1 A ... A ay) = 1 because we may choose a chart such that the

coordinate vector fields are the &,. Using that a1 A... A ap(&y,---56) = 1,
the integration-along-fibres operator becomes

m(oq/\.../\ozn):/al/\.../\an(gtl,...,gtn):1.

With this, (xx) becomes precisely the expression we deduced for vol(M;) in
proposition 2.15, so that

mpu(U) = /U vol(M,)dt.

The following theorem summarizes what we have proven in this discussion.
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Theorem 2.16. Let (M,w,T™, 1) a hamiltonian T™-space. Then
1. mpy is absolutely continuous with respect to the Lebesgue measure on t*.

2. The Radon-Nikodym derivative f(t) = vol(My) is a piecewise polynomial
of degree at most N — n.

Proof. Both claims are immediate from the above arguments if ¢ ~ 0, in which
case the Radon-Nikodym derivative f(¢t) = vol(M;) is in fact a polynomial
by proposition 2.15. But the same holds for a neighbourhood of any other
regular value of u, since we may change the moment map by a constant. In this
neighbourhood, it may occur that f is a different polynomial, which is why f is
only piecewise polynomial. O

2.2.3 Application to Delzant Spaces

This section is an application of theorem 2.16; we show that the symplectic
volume of a Delzant space is equal to the Lebesgue measure of its corresponding
Delzant polytope. In the following, let A C (R™)* a Delzant polytope and
(Ma,wa, T, u) the corresponding symplectic toric manifold. We briefly recall
Delzant’s construction and refer to [10] or [1], chapter XI, for more details.

Recall that Ma is constructed in the following manner: If A has d facets,
start by writing

A={ze®) | ()= N, i=1,...,d}

for some constants A; and v; € R™ the primitive inward pointing normal vectors.
The map
ﬁ:Rd%Rn, e; — U;

induces a map 7 : T¢ — T™ with kernel N. Let i : N — T the inclusion.
Define the map

1
J:Ch — (R, (,2“1,...,zd)b—>§(|z:1|2,...,|zd|2)7

and consider the standard action of T on C? by multiplication with the moment
map
M:J-l-()\l,...,/\d).

Restricting the action to IV, the moment map becomes i* o .
Set Z = (i* o )~(0) and let j : Z < C? the inclusion. Set Ma = Z/N.
Letting 7* : (R")* — (R%)* the induced dual map, one can show

#(8) = u(2).

Hence for a vertex 7 of A, we can find z € Z such that u(z) = #*(7), and
show that the restriction of 7 : (T?), — T™ is a bijection. From this we obtain
a right inverse o, for 7 : T — T" and thereby an isomorphism

T = N x T".
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Letting the T™-factor act on Ma by

0-p(z) = plo-(0) - 2)

is hamiltonian with a moment map pa such that the following diagram com-
mutes:

Z 1l Ly (RY)* — n* @ (RM)*

| |

Ma HA (Rn)*

That is,
pia ©p =Pryojioj.

The action is independent of the choice of vertex 7: Suppose v is another
vertex of A and o, the corresponding right inverse. Then we have

(o7 (0)o,(0)7") = (o (0))m(00 (671))
=001,
so that o, (0)o,(0)~! € N, which means
p(o7(0):) = p(n - (0,(0) - 2))
=p(ov(0) - 2)

for some n € N.
The proof will follow exercises 2.20-2.23 in [8].

Lemma 2.17. Ifa € A, then u~'(a) is a single T™-orbit.
Proof. Consider first the map J from above. Evidently, the image of J is the

set
{(.’,Ul,...,l'd) SN ‘ i 2 O}

We start by noting that if @ lies in this set, then J~!(a) C C? is a single T?-orbit.
The T?action on C? is given by

(e, ... ) (rpef@r, . rgei®) i= (rpel@1t0)  pyeil@atfa)y
from which we see that the orbits are of the form
T. (rleml,. .. ,rdemd) ={(z1,...,24) € c? | 12| =r;}.

From the definition of J, writing a = (z1,...,zq4),

1
J_l(:rl,...,:vd) ={(z1,...,24) | §(|zl\2,...,|zd|2) = (z1,...,24)}

= {(zlv"'»zd) | |ZJ| = \/E}v
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which is precisely a single T%orbit. Evidently, if we shift J by the constant \,
the condition for (J + \)~!(a) being a single orbit is that a be in

{(J]l,...7.’17d) | €T; Z )\z}’

Using the decomposition T = N x T" and comparing with the commutative
diagram for ua above, it follows that orbits by T™ on Ma are projections of
T9-orbits on Z, and that a = pry(z) for some z in the image of J + A, so that
indeed, the preimage by (J + \) o j is the intersection of a T?-orbit with Z.
Hence its projection, which is ua(a)~?!, is a T"-orbit. O

Lemma 2.18. The action of T" on ux'(a) is free if and only if a is in the
interior of A.

Proof. Suppose 0 fixes p(z) € Ma, which means that

p(a(0) - z) = p(2),

so that either o(f) € N, or () € Stabpa(z). As o is a right inverse of = and
N = ker(w), we may already conclude that o(f) € N implies § = 1. We next
compute the stabilizer of z.

Take 7 € A. For all z € Z with pu(z) = 7#*(7), we have on one hand that
pia(p(2)) = 7, which means of course 2 € ;' (7), and on the other, comparing
to the proof of 3.11 in [10], we have that for all i =1,...,d

T E int(A) = <7’7 ’U7;> >\
(T

SRR

However, the multiplicative action on C? by T¢ fixes precisely the zero coordin-
ates in z, so that we conclude that the stabilizer satisfies

7 € int(A) <= Stabra(z) = {e}.
Hence taking 7 = a concludes the proof. O

From this, we conclude that if ¢ € intA, as the action by T" is free, we can
consider the reduced space

Ma = MZI (a)/Tn

and deduce that it is a single point as ,ugl(a) consists of a single T™-orbit.
We are now ready to compute the symplectic volume of symplectic toric
manifolds.
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Theorem 2.19. The symplectic volume of Ma is equal to the Lebesque measure
of A.

Proof. As M, is a 0-dimensional manifold, the exponential of the symplectic
form on M, is just 1. Letting o : M, = {p} — {0}, we have that

Vol(Ma):Aa1:/{0}g*(1):1

whenever a € int(A). If a ¢ A, the preimage px'(a) is empty, and hence the
reduced space is, too, so that the integral vanishes. Thus we conclude that

1, ae€int(A),
vol(Ma):{O agé&)

Now as the Duistermaat-Heckman measure is the pushforward of the Li-
ouville measure by the moment map, we have that

n

VOI(MA) :/ A = mDH(g*)

As ua(Ma) = A, we could take any A C U C g* instead of g*. Recalling now
that we showed dmppg = vol(My)dt, we conclude

vol(Ma) = /

vol(M) dt = / 1dt = vol(A).
o

A

We remark at this point that it is unsubstantial that we did not define vol(M,,)
for a € A since it is a null set with respect to the Lebesgue measure. O
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Chapter 3

The Stationary Phase
Lemma

This section presents the Stationary Phase formulation of the Duistermaat-
Heckman theorem. We begin by quoting the general lemma of stationary phase,
as in [2]:

Theorem 3.1 (Lemma of Stationary Phase). Let X™ a compact orientable
manifold, A a volume form on X, and f: X — R a Morse function. Then

n/2
t itfy _ it f(p)
(%) [ = 5 et @ 4 ra)

pECrit(f)
where the remainder term R(t) is of order O(%) and the constants c(p) are given
by '
etp) = exp (T sen ess(7)(p) ) | dt(ess(1) 1) sl
the (e;) being a basis of T,M such that (e, ..., e,) = 1.

In some cases, the remainder term is in fact identically zero, for which the
Gaussian integral serves as an example we will get back to later:

Lemma 3.2. Let Q a diagonal matriz and & € R™. Then
1 i ) ) )
W / 3 Quo=ite g, | det Q\_% exp (ngn Q) exp (—;gTQ_lf) )
See [2], section 8, for a proof. If we take f to be a quadratic function, that
is,
aq
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and evaluate the Gaussian integral at £ = 0, we see that for any ¢,

1 ; 1 ;
@2 /]Rn et F@=FO) gy — |t det Q|2 exp (ngn Q) )

which is equivalent to

n

(;ﬂ) : /n et @) gy = | det Q|7% exp <7ngnQ> exp (itf(0)).

We have
1T
Vf(r) = : ; Hess(f) = @,

AnTn

so that the only critical point of f is 0. Hence

¢(0) = exp <7ngnQ> | det Q|*%

as desired. Hence if we set X = R", A the Lebesgue measure and f a quadratic
function, there is indeed no error term. Notice though that in this example, X
is not compact.

In this section, we would like to prove that for compact hamiltonian T"-
spaces and the right Morse function, the error term also vanishes.

Theorem 3.3 (Duistermaat-Heckman Stationary Phase Lemma). Let (M2Y w, T, 1)
a compact hamiltonian T™-space and v € t such that §,(p) =0 <= p is a fized
point. Call such v nondegenerate.

Letting X = M, f = p¥ = (u,v), and A = “T’L—T in theorem 3.1, the error term

vanishes: N
t it u® wN it u® (p)
—_— —_— - .1
(27r> /Me N! Z clp)e (3.1)

p€ECrit(pv)
Note that in the case where v is nondegenerate, p is a critical point of u* if and
only if it is a fized point of the action.

We prove this in a series of steps, following section 33 in [2], or exercises
2.11 to 2.15 in [8]. In the following, we always consider the hamiltonian space
(M?N W, T", u) for M compact, and v € t nondegenerate. Denote the Liouville

form by o = %+, and let £ = &, the fundamental vector field associated to v.

‘ND»

Lemma 3.4. Let Q(M) = @2N QM) be the deRham complex on M and let
Qiny denote the subcomplex of T —mvamant forms. Define the operator

5§:d+lg.

6 maps Qiny nto Qiny and satisfies (5§ = 0 on Qiny. Note also that §¢ carries
the the space of even forms into the space of odd forms and vice versa.
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Proof. We have for w € Qi (M) that ¥ (dw) = d(vjw) = dw. Furthermore,
note that for z € M
d

=2 0 - (exp(tv) - x) = 4 exp(tv) - (0 -x) =£(0 - ).

Dijo(@)[é )] 7|

t=0

Consider w € Q2 (M) as the general case only introduces more notational

complexity. Then for v € T, M,

This proves the first claim. For the second, take w € (M) and compute

5?(,0 = d*w + drew + 1edw + z?w
=0 )

- =L¢(w) =0

by Cartan’s magic formula. By invariance, we have

d
Le(w) = i

4
dt
—0.

*
’ ,ll)exp(tv)w
t=0

t=0

O

Lemma 3.5. Suppose that the set My, of points fized by T" is finite, and let
My = M\ My,. Suppose po = po + po + ... + plom € EBZ\; Q2 for some
m < N € N is §¢-closed. Then pion, is d-exact on My.

Proof. First, equip M with a T"-invariant riemannian metric and define

o= (£, g .
€]l
« is linear and smooth as a composition of smooth functions, so it defines a
1-form on Mj. It is not well defined on all of M since the denominator is zero
at the fixed points; Note that it may not become zero for any other point as we
took v € t to be nondegenerate.
« is invariant, as for x € My and v € T, M,

(€, )0-2 (Do (x)[u]) = (£(0 - x), Do (x)[ul)
= (Dyo(x)[()], Dipo()[u])
= ((z),u).
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Thus « satisfies the following properties:
Le(a) =0,  a() =1, (3.2)
and also
1¢(da) = 0.
This can be seen by Cartan’s magic formula:
1e(da) = Le(o) — drear,

where both terms on the right hand side are zero due to (3.2).
Next, define
v=aA(l+da) Ap,
where we let (1 + da)~! be defined as the von Neumann series

2N

(1+da)™ = (~da)".

=0
We now want to show that
te(dv) = 1g(p)-
As d(1 + da)~t = 0, we obtain
dv=daN(1+da) ' Au—aA(l+da)™t Adu.
Using that d¢(p) = 0, we have dp = —u (1), and so
dv=dan(l+da) " Ap+an(l+da)t A(p).
Applying 1 to both sides, we obtain, using (3.2):
16(dv) = da A (1 +da) ™ Are(p) + 26 (@) AL+ da) ™t Ang ()
——

= (daA(1+da) ' +(1+ da)__l) A 1e(p)
2N

= (Q_(=1)"((da)™" + (da)’) 1g(p)-

=0

=1

Finally, on Mo, 12¢ : QN (M) — Q™ 1(M) is injective, which implies that j,, =
dl/mfl. O

We want to apply this lemma to the form 8 = p” —w € Q° @ Q2. Indeed,

is d¢-closed:
d¢(8) = dp” + ¢ (") + dw +1¢(w) = 0
-0 =0

by definition of the moment map. Hence also exp(itf) is dc-closed, and its
component of highest degree 2%V is then, up to constant multiple, e’**" . Hence
by the last lemma, there exists von_1 € Q*N=1(M \ Mp) such that dvey_; =
et o,
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Proposition 3.6. Let B, denote a small open neighbourhood of the critical
point p. Then we have by Stokes’ Theorem

/M exp(itp’)o = Z (/B

pECrit(u?) P

exp(itp’)o — /BB V2N1> (3.3)

Proof. As we assume the fixed points to be isolated, we may take the B, to be
disjoint. Note that e*#" is exact outside U, where U is the union of the B, so
that

/M exp(itp’)o = / exp(itp®)o + Z /Bp exp(itp®)o.

M\U p€eCrit(uv)

Now as fM\U exp(itn®)o = — 37 criv(ur) faBp van_1, we are done. O

We may evaluate the right hand side of 3.3 by using the equivariant Darboux
theorem 1.15, which we proved in chapter 1:

Theorem 3.7 (Equivariant Darboux). Let (M?N w, T", 1) a hamiltonian torus
space, and p a fixed point of the action. Then there exists a T™-invariant neigh-
bourhood U of p, coordinate functions (x1,...,TN,Y1,...,YN) centered at p and
constants XV ... AN € Z™ such that on U

1. wy =wp = Z;V:1 dej Ndy; = %Z;\Ll dzj A dz;, where z; = xj + iy;.
2. The action becomes multiplication with weights A7) :

i0 0, iAM g iAMN) g
(e"', ... e /)-(zl,...zN):(e< Yo, e Yan ).

8. The moment map becomes

n N
1 . 1 .
_ INTAD 22 4 2] = INTAD) )2
NU*U(I’)JFQE A +y|7u(p)+2§ A 257

Jj=1 Jj=1

If we evaluate the right hand side of 3.3 in these coordinates, we may use
Stokes’ theorem again, which yields

J

Lemma 3.2 has already established that this integral has no error term in its sta-
tionary phase expansion, and so the same holds true for exp(itu¥)o, concluding
the proof of theorem 3.3.

explitpy o — /

VaN—1 = / exp (it )wo-
8B, R2N

p
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It is also simple to compute the constants c(p) in these coordinates. The
Hessian of pf; is then

(AW, v)
(A, v)

Hess(1f))(p) = :
<)\(N)7 v)
(AN, v)

so its determinant is H;V:1 a;(p,v)? for a(p,v) = (AU v). Recall that the A(*)
depend on p, and note that this also shows that u¥ is Morse.

Denoting the number of negative eigenvalues of the Hessian by [, its signature
is 2N — 4l. In the formula for the ¢(p), this yields for the first factor

exp (s Hes(1)0) ) =¥ (1)

The second factor becomes

-1 —1

N N
H o)l | =) [[apo) |

so that the signs cancel and we obtain
N
, -1
c(p) = N T (alpv)) "
j=1

Inserting this into the expression 3.1 gives our final result:

Theorem 3.8. Under the assumptions of theorem 3.3, we have

N N it v
(t) / eitWﬂ))wi:Z et (u(p),v) ,
2mi M N! . H;V:la(p,v)

the sum being over the fized points of the action.
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Chapter 4

The Harish-Chandra-
Itzykson-Zuber
Integral

4.1 Outline

In this section we compute explicitly a certain integral, as an application of
the Duistermaat-Heckman theorem. Let A, B € Gl,(C) be hermitian matrices
with eigenvalues A1 (A) < ... < A, (A) and A\ (B) < ... < A, (B). Consider the
integral

U(n)

for U(n) the unitary group and ¢t € C*, the integral being with respect to
the Haar probability measure of the unitary group. Then the Harish-Chandra-
Itzykson-Zuber formula asserts that

Theorem 4.1 (Harish-Chandra-Itzykson-Zuber).

det((e”i(A)*J‘(B))lgm-gn)

T2 AMA)AN(B))

Z(A,B) =cpn——5—

whenever there are no multiple eigenvalues. In this expression, A(A(M)) de-
notes the Vandermonde determinant

ANM) = T 1) = x(M)),

1<i<j<n

and c,, s the constant

n—1
Cp = H il
=1
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We proceed along the lines of section 3 of [11] in proving the theorem.

Proposition 4.2. To prove the Integral Formula, it suffices to show that

/ etTr(AUBU*) dU = CA,B det ((et/\z(A)Ai(B))i’j> (41)
U(n)

n2—n
2

for some constant Cs g which only depends on n, A, and B.

Proof. Set N := "22_” and X(t) = (eP(AX(B)), . We consider the Taylor

expansion of det(X (¢)) near zero. If the proposed equality holds, then
N

Ca.B

det(X (1)) / ! THAUBUT) g,
U(n)

and thus we obtain for the derivative

7tN/ etTr(AUBU*)dU
U(n)
J j ‘ )
= Z ( )N(N—l) .. (N—k—i—l)tN_k/ Tr(AUBU*)j—ketTr(AUBU ) dU.
U(n)

Evidently, this is only nonzero at ¢ = 0 for £k = N, so that the N-th Taylor
coefficient becomes

1 1 /N 1
—_— N!/ 1dU = .
Ca,p N! (N> U(n) Cap

However, we may also express the determinant by the Leibniz formula
n
det(X(t)) = Z sgn (o) H etAi(A)As(i)(B)
o€ESy =1

and compute the N-th coefficient of its Taylor expansion. For ¢ fixed, the
derivative is

aN n ‘ v N\ 2 N
2 =0 [[-o® = 3" (a> [T (B))™
=1

la|=N i=1

=Y N!Haii!(Ai(A)Ag(i)(B))%

la|=N i=1

for @ € N a multiindex. Hence the N-th Taylor coefficient must be

> smn0) 30 T oy uho (B

oS, la|=N i=1
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Note that for a summand with «p = «a; for some indices, this summand will
cancel out with the one arising from the permutation exchanging o(k) and
a(1); hence it suffices to consider only multiindices with all components distinct.
However, as N = %(n2 —n) = 0+1+...4+n—1, we conclude that the components
of a are a permutation of {0,1,2,...,n — 1}, that is, a; = (i) — 1 for some
a € S,. Hence we may rearrange this sum to give

> sgn(o) > Hﬁ()\,rl(i)(A))\aflog(i)(B))“l.

gES, a€sS, i=1
Setting 3 = a~! oo gives that sgn (o) = sgn (a)sgn (8), and noting that we may
as well sum over o~ ! lets us rewrite this as

n

S s (@)sen (8) T s (hago (A)Asgiy (B)) .

I — 1))
a,BES, i=1 (Z 1)

As the Vandermonde determinant can also be expressed by the Leibniz formula

as
n

AQA) = 3 s (o) T (470,
€Sy i=1

we see that the expression for the N-th Taylor coefficient is just

NCTOINCYEID | et

Comparing this with our first computation, where we obtained that the Taylor
coefficient must be equal to ﬁ, we substitute in equation 4.1 the expression
for C'4,p we just obtained to see that

/ ot TH(AUBU™) grr (n—1)t---0! det ((et)\i(A)/\j(B))ij) )
U(n)

n2—n
2

which is what we want to prove. O

It remains to prove that 4.1 holds. As the trace is invariant under conjug-
ation, it suffices to take A and B diagonal matrices. In the case where the
integral formula is supposed to hold, we may assume that A and B have no
multiple eigenvalues, so that we can write

ai by
A= diag(a) = L , B = diag(b) =

an by

for a = (a;);,b = (b;); € R™ both with pairwise distinct components. By ana-
lytic continuation, we may take t to be imaginary. Furthermore, by subtracting
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a constant from A, we may take A to have trace zero, which is a condition we
will need later. With these simplifications in place, we must show

/ tTHAUBUY) 7 — 0, , det((eitasbr); )t~ (" =m)/2, (4.2)
Un)

Expand the right hand side as

Cas Z sen (U)eita‘o(b)t—(nz—n)/?
og€eSy

This already bears some resemblance to the formula from the Duistermaat-
Heckman theorem in its stationary phase formulation. To see that we can in
fact apply it, we will seek to interpret the integral on the left hand side as over
a hamiltonian torus space with an action whose fixed points are parameterized
by Sp,. We will introduce the notion of coadjoint orbits for this purpose.

4.2 Coadjoint Orbits

The goal of this section is to show how for a matrix Lie group G, the orbits
of the coadjoint action on the dual of the Lie algebra can be endowed with a
symplectic structure. We will focus on matrix Lie groups as this will make the
proofs easier, and is the primary case we will be concerned with in the proof of
the Harish-Chandra-Itzykson-Zuber integral formula. This section follows [12],
section 8.3.3.

4.2.1 Adjoint and Coadjoint Representations

We start by recalling the basic definitions. Let us consider a Lie group G with
Lie algebra g. Conjugation defines a diffeomorphism on G:

V,:G— G,
h — hgh™ 1.

Hence g — W, defines a smooth action on G.
We define the adjoint at an element g € G to be the derivative of ¥, at the
identity, which is a linear isomorphism since ¥, is a diffeomorphism:

Adg=DVy(e): g — g,
and call

Ad: G — Gl(g)
g— Ad,

the adjoint representation.
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We use this to define the coadjoint representation
Ad*: G — Gl(g%)
g — Ad,
as follows. For ¢ € g*, we let Ad;(qb) the element which acts on v € g by
(Adg(¢),v) = (¢, Adg-1(v)).

We will use the notation common for group actions: Letting g € G, v € g and
¢ € g*, write

g-v=Ad,;(v),
g-¢=Ady(e).

Of course, we should check these are indeed group actions. In doing so, we will
see why taking the inverse of g in the definition above is necessary to obtain a
left group action:

Proposition 4.3. For g,h € G, we have Adgy o Adj, = Adyy,, as well as Ad; o
Ady = Ath-

Proof. The first statement is a simple application of the chain rule:
Adg o Adp, = DVy(e) o DVy(e) = DU,V (e) = D¥gu(e) = Adgp.
For the second, take ¢ € g* and v € g and compute

(Adj 0 Adj,(9),v) = (¢, Adj-1 0 Adg-1(v))
= <¢7Ad(gh)_1(v)>
= <Ad:;h(¢)vv>

We can take this one step further by taking the derivative of Ad:
ad := DAd(e) : g — gl(g),
where gl(g) are all linear maps g — g. The map ad satisfies for v,w € g
ad, (w) = [v, w].
See for example [3], proposition 10.23. Define the coadjoint version similarly by
(ad’(6), w) i= (6, ady(0) = (@, 1, v]).

We now lay the foundations which will help us prove that the symplectic
structure constructed in the nexts section is well-defined. Same as with a Lie
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group acting on any manifold, we obtain fundamental vector fields associated
to v € g for each of the representations, defined by

d
& € %(g) by 61}(“) = % Adexp(tv)(u)7
t=0

d
f; € x(g*) by fi(qﬁ) = a Adep(tv) <¢)

t=0

We will also need the following lemma from problem M.5 in [3].

Lemma 4.4. For any action, the map v — &, is a Lie algebra homomorphism,
that is, it respects the Lie bracket.

Proof. For any action pu, denote by p? the map u?(g) = g - p. Then we may
rewrite the fundamental vector field as

G = | e = Dirol)

Hence we have
(80, &ul(p) = [DpP(e)[v], Dp? () [w]
= DpP(e)[[v, w(e)]
= €[v,w] (p)
O
In the case where G is a matrix Lie group, we have for v € G, w € g that
Ad,(w) = vwv ™!,

This gives that Ad, : g — g is an algebra homomorphism:
Ady([v,w]) = glow—wv)g~" = gug~ gwg™' —gwg~gug~! = [Ady(v), Ady(w)].

Implicitly identifying T, g = g, this also simplifies the expressions we obtain for
the fundamental vector fields, in that

&n(w) = % t:o Adexp(to)(w) = % . exp(tv)w exp(—tv) = vw — wv = [v, w).
Similarly for &:
d
<£:; ((z))) w> - < a o Adzxp(tv) (¢)a w>
d
= <¢7 % B AdCXp(ftU) (U))>
<¢7 [_Ua ’LUD
= (¢, [w,v]
- <ad1>i7 ’LU>

Let us quickly summarize these results:
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Proposition 4.5. Let G a matriz Lie group, v,w € g, and ¢ € g*. Then we
have

gv(w) = a‘dv(w) = [U7w}7 <£:(¢)a w> = <ad2(¢)7w> = <¢a [’LU,’UD.
Let us also give a proposition relating the two vector fields:

Lemma 4.6. Let G a matriz Lie group, g € G, v € g, ¢ € g*. Then we have
Ead, () (9 @) = Adg(&5(0)).

Proof. Take another element w € g and compute

(Ady(&5(9)), w) = (£;(9), Adg-1 (w))

= (¢, [Ad (w) v])

= (¢, Ad 1w, Adg(V)])
= (Ady(9), [w, Ady(v)])
= (Ad ( ), adaq (v)(w )
= (adj, (») (Adg(9)), w)
= (EAd, (v) (9~ @), w).

4.2.2 Symplectic Structure on Coadjoint Orbits

Here we define a symplectic form on the coadjoint orbit
Oy = {Ady(¢) | g € G}
for ¢ € g*.

Proposition 4.7. Let ¢ € g* and consider g4 C g, the Lie algebra of the
stabilizer of ¢ in G, that is, of

Staba(¢) = {g € G | Ady(¢) = ¢}.
We claim that

go ={veg| (s wv])=0, foralwe g}
Moreover, v € g4 if and only if £(¢) = 0.

Proof. Let us denote the set in question by X. Note that (¢, [w,v]) = (ad}(¢),w) =
(€5(6),w), s0 v € X > £5() = 0.

As the exponential map associated to Stabg(¢) and g4 is just the restriction
of the exponential map g — G, we have that if v € gy, then exp(tv) € Stabg(¢)
for all t. Hence Ad,,(1,)(¢) = ¢, so that £;(¢) = 0 and thus v € X.

If v € X, it suffices to show that exp(tv) € Stabg(¢) for all ¢ in a neighbour-
hood of 0 to conclude that v = %‘t:o exp(tv) € g4. This is however clear from

£:(0) = 0. 0
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We can now begin the construction of the symplectic form.
Lemma 4.8. For ¢ € g*, define an alternating form on g by setting for v,w € g
(Dqﬁ('l}, ’LU) = <¢7 [Ua w]>
We vanishes precisely on gg.

Proof. &4 is evidently alternating and bilinear due to bilinearity and antisym-
metry of the Lie bracket. If v € g4, then by the previous proposition, we have
that (¢, [v, w]) = @g(v, w) = 0 for all w € g, and vice versa. O

To define a symplectic form on O, we give a description of its tangent space.
Lemma 4.9. We can identify the tangent space TyOy with the quotient g/g,.
Proof. The map

g — T¢O¢
v & ()
is linear in v:
* d *
£v+w(¢) = E —o Adexp(tv) exp(tw) (¢)
d R d x
- dat o Adexp(tv) exp(O)(¢) + ds S Adexp(O) exp(su;)(¢)
=& (0) + &0 (0).
It is furthermore surjective and has kernel g, by proposition 4.7, whence the
claim follows. O

Theorem 4.10. @, induces a nondegenerate two-form on the tangent bundle to
the coadjoint orbit Oy passing through ¢. Moreover, the induced form is closed
on the tangent bundle to Oy through ¢, making it a symplectic form.

Proof. Every element of T3(Oy) can be written as &(¢) for some v € g. Set

we (&5 (9), §1(8)) := —@g (v, w).

This is well-defined, since if £} (¢) = &(¢), then 0 = £;_ ,(¢), so that v—w € gg.
Hence @y (v, ) = &g (w, -).

If we(€(9),-) = —Wy(v,) = 0, then v € gy by the last lemma, so that
&:(¢) = 01,0,, implying nondegeneracy.

Lastly, we show w is closed. Take u,v,w € g to compute

dw (& &0 ) = —w([€ar §0l5 &) + (€0, 60): &) — w((S, €ul, &)
2 +<'7 [[uvv]va - <'7 [[uvw]vv]> + <'7 [[uw],u])
=& v w]) + &5 [u, wl) = €5,( [u,v])

2 &l o, w]) + &5 [u, w]) — &5 (- [u, v]).
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(1) used that v — &, is a Lie algebra homomorphism and (2) used antisymmetry
together with the Jacobi identity. To see that the last line equals 0, note that

x d . d
€010 0))@) = | (Adigu (@) [oul) = 2| (6 Adugu([o,w]).
=0 t=0
The last expression is equal to (¢, —&,([v,w])) = (¢, [[v,w], u]) by proposition
4.5. Hence we may rewrite the last line as
(5 [l wl, ul) + ¢, [fw, ul, o)) + ¢ [[u, 0], w]) = 0
by the Jacobi identity. O
The symplectic form defined in theorem 4.10 is called the Kostant-Kirillov-

Souriau form. This makes any coadjoint orbit Oy into a symplectic manifold,
and hence in particular of even dimension.

Theorem 4.11. For any ¢ € g* and Oy C g* the coadjoint orbit through ¢,
the inclusion map

i O¢, — g*
is a moment map for the coadjoint action. Hence (Og,wr, G, 1) is a hamiltonian
G-space.

Proof. We have i¥(¢) = (i(¢),v) = (¢, v), and
(di*) (€0 (9)) = € (D) (")

t=0

— —(@r)s(E1(0).£5(6)
(16;01)0(E5(9)).

Lastly, we also have

(i(Ady (), w) = (Ady(¢), w) = (¢, Adg-1(w)) = (i(¢), Adg-1 (w)) = (Adg(i()), w),

proving equivariance. O

4.3 Finding the Proper Hamiltonian Space
We want to take for our symplectic manifold a coadjoint orbit, so let us make

sense of the adjoint and coadjoint representations in this case. Here we follow
again [11], section 3.
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4.3.1 Adjoint and Coadjoint on U(n)

Recall U(n) < Gl,(C) is a Lie group of real dimension n?. Let us compute its
Lie algebra, given by

u={¥(0) | v path in U(n) with v(0) = id}.

As v must be a path in U(n), it satisfies y(t)y(t)* = id. Differentiating this
identity yields
7(0)7(0)" +~(0)37(0) =0,
so if 4(0) = A € My, xn, we have that
u={A€ Mux, | A" =—-A}.

We now seek to give a description of gl(n)*. Define on M, x, the symmetric
bilinear form

(A, B) := Tr(AB).

Recall that Tr is invariant under cyclic permutations, which also implies it is
invariant under conjugation:

Tr(UAU™Y) = Tr(AUU) = Tr(A).

Then each ¢4 € gl(n)* is of the form Tr(A-.), and in particular, every ¥p € u*
is of the form Tr(B-) for some B anti-hermitian. Let us also write ¢4 = A, and
thus (¢4, B) = (4, B).

The adjoint acts on u by

Ady(A) =UAU =UAU*
for U € U(n). Hence for the coadjoint, we have

(Ady;(B), A) = (B, Ady-1(4))
= (B,U*AU)
= (UBU*, A),

so that also Adj;(B) = UBU*. Hence the coadjoint orbit of B € u* is just
Op ={UBU*|U € U(n)}.

Recall that we may write the tangent vectors in TpOp as £ (ép) = ady (¢p).
Compute
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where the last step used that A € u is anti-hermitian. Hence let us write
tangent vectors as £%(P) = [A4, P] € TpOp. With this identification in mind,
the Kirillov-Kostant-Souriau symplectic form on Op becomes

WP([Sa P]7 [T,P]) = _<P> [S7T]> = —TI“(P[S, T])

4.3.2 Rotation of the Orbit

Let us come back to the left hand side of (4.2). As we consider A and B to be
hermitian rather than anti-hermitian, as are the elements of u, we define

M =iOp,
and also the diagonal map

C11
D:M =R, (cij)i<ij<n =

Cnn

Then recalling we may take A = diag(a) for a € R™, we have for any matrix B
that Tr(AB) = a - ®(B). Hence we can rewrite the integral as

/ eitTr(AUBU*)dU:/ eita~<1>(ﬂv) du(x)
U(n) M

for p some Haar measure on M. The discussion about coadjoint orbits lets us
interpret M as a symplectic manifold; Letting P € iOp, we have that tangent
vectors in T;piOp are of the form iv for v € TpOp.

Indeed, letting v a path in Op, we have that iy is a path in M, and thus
i7(0) is a tangent vector to M.

Recall that v is of the form [S, P] for some S € u, that is, S an anti-hermitian
matrix. Hence define the symplectic form on M such that multiplication by 4
becomes a symplectomorphism:

wip(i[S, P),i[T, P]) := wp([S, P}, [T, P]) = —=Tx(P[S, T)).

Thus if we just write B = iP <= P = —iB for a hermitian matrix B, we
may write tangent vectors as i[S, P] = [S,iP] = [S, B], and the symplectic form
becomes

wp([S, B),|T, B]) = Tr(iB[S, T)).

The next step is to interpret ® as a moment map for a suitable action.

Proposition 4.12. Leta € R™ and X, € X(M) defined by X,(P) = [idiag(a), P].
Then d(a - ®) = —1x,w.

Proof. Differentiate the map ®* = a - ® at an arbitrary vector field Y € X(M),
which we can take to be of the form Y (P) = [S(P), P] for S : M — u smooth.

47



Notice first that a - ®(P) = Tr(diag(a)P), so that a - & = Tr o lgjug(a), Where
Ldiag(a) denotes left multiplication by diag(a). Thus

D(a - ®)(P)[Y(P)] = DTr(diag(a) P) Dégiag(a) (P)[[S(P), Pl]

= Tr(fdiag(a) [S(P),P])
= Tr(diag(a)[S(P), P])

since both Tr and /gjag () are linear. Using the cyclical symmetries of the trace,
we obtain the identities

Tr(A[P. S)) = Tr(P[S, A]) = Tx(S[A, P]),
which holds for arbitrary square matrices. Thus

Ti(diag(@)[S(P), P)) = Tr(Pdiag(a), S(P))

= —Tr(¢Plidiag(a), S(P)])

= —wp([idiag(a), P], [P, S(P)])
= —wp(Xa(P),Y(P)).

As Y was arbitrary, we conclude
Ao = —i1x,w. (4.3)
O

We now restrict the conjugation action by U(n) to an appropriate subgroup
which we can identify with a torus, such that its moment map is ®. Consider

T :={D e U(n)| D diagonal, and det(D) = 1}.
As T C U(n), its diagonal entries must have absolute value 1. The map
Tt —T

(91, .. -70n—1) — diag(&l, AN 70n—170)

for 6 = (Hnil 6;)~! is a group homomorphism and evidently bijective.

j=1
Its Lie algebra t must be a subset of the anti-hermitian diagonal matrices in
u; an arbitrary curve in T can be written as y(t) = 7(e1(®), ... e?n-1(1)) for

some arbitrary functions 6; : R — R with 6,;(0) = 0. If éj (0) = vy, then for

() — (H;:ll @iaj(t))—l — e—iZ;:ll ef(t), we must have

d n—1
—_ io(t) = —1 V;.
@i, 2

From this we see that the Lie algebra of T' consists of all anti-hermitian diagonal
matrices of trace zero. A diagonal matrix being anti-hermitian is equivalent to
its entries being purely imaginary, so that we can identify t with a subset of
R™ by dividing by ¢ and taking the diagonal. Let us state this as a lemma for
clarity.

48



Lemma 4.13. The Lie algebra of T is the set
t={Acu|Tr(A) =0, A diagonal},
which we may identify with R"~! via the map

v R S (V1. yUp—1) — tdiag(vy, ..., Vp—1,0)

forv=3""lv;.

Verifying that X, is the fundamental vector field for the action by this
subgroup will establish ® as a moment map.

Lemma 4.14. X, is the vector field generated by the action of T on M by
conjugation.

Proof. Recall that for the action by U(n) and S € u, the fundamental vector
field is just
§s(P) =[S, P).

Let v € t ® R" ! and a = v(v) = (v,— )., v;) € R". Then the vector field
generated by the action restricted to T is

@ A0 (P) = [0), P) = [idiag(a), P) = Xa(P).
t=0

O

It is now quick to verify the conditions to use the Stationary Phase Duistermaat-
Heckman theorem; we need to verify M is compact and to give a description of
the nondegenerate elements of t.

2

Proposition 4.15. The manifold M has dimension n® —n and is compact.

Proof. As the map U — UU™ is continuous and has kernel U(n), we have that
U(n) is closed. Thus any coadjoint orbit Op is also closed, since any path in
Op is of the form U(t)PU(t)* for U(t) a path in U(n). Hence as the limit of
U(t) lies in U(n), so does the limit of U(¢)PU(t)* lie in Op.

Any coadjoint orbit by U (n) is bounded since |[UPU*||* = Te(UP*U*UPU*) =
Tr(UP*PU*) = Tr(P*P) = | P||*.

Hence any coadjoint orbit by U(n) is compact, and so M = iOp is also
compact.

As for the dimension of M, recall by proposition 4.7 and the proof of theorem
4.10, that the tangent space of the orbit admits the identification TgOp = u/ug,
and so the dimension of the tangent space, which coincides with the dimension
of Op and M, is given by dim(u) — dim(ug). We have that dim(u) = n%. The
stabilizer is given by

Stabym (B) = {U € U(n) | Adj;(B) = UBU* = B},
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This condition is equivalent to UB = BU. As we took B to be diagonal and
without multiple eigenvalues, U commutes with B if and only if U is also
diagonal. The unitary diagonal matrices can be identified with T™, so that
dim(Staby () (B)) = dim(up) = n, and hence

dim(M) = dim(TgOp) = n? — n.

4.3.3 Critical Values of the Moment Map
Suppose P € M is a critical value of ®* for a € t, that is,
0 = do°|p = —wp(fidiag(a), P], ).

Thus by nondegeneracy, d®%|p = 0 <= [idiag(a), P] = 0 <= P commutes
with idiag(a). This is the case if and only if P is block diagonal (diagonal if a
has no multiple entries).

On the other hand, the fixed points of the action are those for which DPD* =
P <= DP = PD for all D € T. Hence as T contains diagonal matrices
without multiple entries, P is a fixed point if and only if P is diagonal.

As we also took B = diag(b) to be diagonal, and as unitary diagonalization
matrices are unique up to permutations of their columns, we have that the
diagonal matrices in M consist of

bo(1)
Fix(M) = |o €S,
bo(n)

Evidently, this is a subset of the block diagonal matrices in M, and coincides
with the critical points of ®* if a has no multiple entries. This proves

Proposition 4.16. The nondegenerate elements a € t, that is, those such that
X.(P) =0 <= P is fixed by T, are those elements with pairwise distinct
entries.

We are now in place to use the Duistermaat-Heckman theorem. It tells us
that, for a € t nondegenerate,

2

2t 2_n 7 iag(o iag(a
(t) 2 / Jit(®,diag(a)) wm™ —n)/2 _ eit(®(diag(c(b))),diag( )>’
2mi M ((n? —n)/2)! [1; @i (o(b),a)

=

oES,

which we rearrange to obtain

Theorem 4.17. Let A = diag(a) without multiple eigenvalues and trace zero,
B = diag(b) without multiple eigenvalues, and t € R. Then

n2

/ eit a~¢"u — CA,B Z eit(bo’(b)tf 2*n
M

ocES,
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for M = {iUBU* | U € U(n)}, ® : M — R™ the diagonal map, and p the
Liouville-measure associated to the Kostant-Kirillov-Souriau symplectic form

on M, and
n2-n 1
O = 27TZ e '
4B <( P 5= Oéj(a(b)’“)>

oeS,

Corollary 4.18. The Harish-Chandra-Itzykson-Zuber integral formula holds.

Proof. Using the discussion just after the proof of proposition 4.2, all that is
left to show is that

/ eitTr(AUBU*)dU _ C/ eita'q>(z)d'u(x)
U(n) M

for some constant C, possibly modifying the constant C'4 p from above. For
A and B diagonal and x = UBU*, a - ®(z) = Tr(AUBU*), so we may as well
consider the integral on the right hand side to be over U(n) instead. We show
that u is a Haar measure on M, giving that it must be a multiple of the Haar
probability measure, which implies the claim.

This means we must show p is U (n)-invariant. This follows quickly from the
conjugation invariance of the trace:

((Ady)w)([S, B, [T, B]) = wusu-(U[S, BIU", U[T, BJU™)
= wypy~([USU*, UBU*],[UTU*,UBU™])
Te(UBU*[USU*,UTU™])
_TT(ZUBU Uls, T1U™)
— TWUB(S, TU")
= Tr(iB[S,T])
:WB([S7B]=[T7BD'

Hence w, and by extension p, are U(n)-invariant. O
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